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Abstract
We present a detailed description and a consistent explanation of the transparency observed in
the Mössbauer absorption spectra at a nuclear level mixing in FeCO3. We develop a model for
scattering in this nuclear � system in a Maxwell–Schrödinger approach, taking into account
multiple scattering and polarization effects. It is shown that the level mixing scheme not only
yields an expected Stark splitting, but, due to the unequal relaxation rates and transition
strengths, an additional interference term is present. Therefore, this scheme is equivalent to the
� scheme considered for EIT in quantum optics. The interference in the absorption of the
gamma radiation can be destructive, leading to a partial transparency, but can also be
constructive. Both types of interference are present in the observed spectra.

1. Introduction

Five years ago, a partial reduction of absorption was observed
at a nuclear level crossing in a single FeCO3 crystal [1]. This
transparency was quickly designated as the first observation of
electromagnetically induced transparency (EIT) [2] for gamma
radiation. Thereafter it was recognized, however, that the
nuclear level mixing scheme is not identical to a typical three-
level � scheme in quantum optics [3]. In the latter scheme the
two lower lying states are (meta)stable, which is a necessary
condition to induce interference. It is readily shown that, if the
coupling levels have exactly equal decay rates, all interference
vanishes. In this case, however, it is not possible to fully
explain the experimental data. More specifically, the lack of
an appreciable reduced absorption in a second � scheme in
the perpendicular geometry, where the radiation is incident
perpendicular to the symmetry axis, poses a hard challenge for
our models.

This paper now aims to provide a fully consistent
explanation of the transparency observed in both experimental
geometries. The key lies in the presence of an additional
relaxation mechanism, which yields different relaxation rates
for the levels involved in the different � schemes.

Previous theoretical studies [4] have already shown that
this nuclear level mixing scheme yields the creation and
enhancement of radiation with a polarization complementary
to the incident radiation. This radiation contributes to the

reduction of absorption and is delayed with respect to the
incident radiation.

We want to emphasize that these dynamical and
polarization-dependent effects are also incorporated in the
model discussed here. Moreover, this is the first time that
we present quantitative fits of the experimental results in both
geometries.

In section 2 the set-up and results of the Mössbauer
experiments are described. We first discuss the relevant
properties of the FeCO3 crystal including the effects of the
impurities. After briefly reviewing some features of Mössbauer
spectroscopy, the spectra are presented along with a crude
analysis using Lorentzian absorption lines.

In section 3 a theoretical model for nuclear scattering in
a three-level scheme is developed based on the semiclassical
Maxwell–Schrödinger approach. The results for both equal
and unequal relaxation rates of the coherences involving the
excited levels are first analyzed analytically in the thin absorber
limit. The full expressions are then solved numerically in order
to find a best fit of the experimental spectra.

Conclusions are drawn in section 4.

2. FeCO3 Mössbauer experiments

2.1. FeCO3 single crystal

Ferrous carbonate or FeCO3, naturally occurring as the
mineral siderite, chemically belongs to the carbonate group
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and structurally to the calcite (CaCO3) subgroup (hexagonal
space group R3c). The threefold symmetry of the triangular
carbonate groups explains the trigonal symmetry of the FeCO3

crystal. In a pure single crystal the principal axis of the axially
symmetrical electric field gradient (efg) then coincides with
this symmetry axis, which will be referred to as the c axis.

Natural siderite, however, is usually impure, with
impurities quoted up to 17% [5–11], mainly Mg and Mn,
possibly Ca and Zn. All of them are chemically equivalent
to Fe. Because the Mg and Mn ions have similar ionic radii
(0.072 and 0.083 nm, respectively, compared with 0.078 nm
of the Fe ion [12]), they are expected to be found on
substitutional sites. Complete series of Fex Mg1−x CO3 and
FexMn1−xCO3 are possible [13]. A Ca ion has an appreciably
larger radius (0.100 nm [12]) and will not so easily substitute
for Fe. It is well documented, however, that calcite can
appear as a coexisting carbonate species in the siderite crystal
structure [13].

The chemical composition of our siderite crystal has been
obtained through an atomic absorption spectroscopy study.
Expressed in atomic proportions, the total cation content of the
sample is 84.2% Fe, 8.1% Ca and 6.4% Mn with small traces
(<1%) of Na, Al, Mg, K and Sr.

The 6.4% Mn content on substitutional lattice sites can
disturb the axial efg at the Fe site. Ab initio calculations [14]
show that an Mn impurity can have a small, but non-negligible,
influence on the efg. If one of the six nearest neighbors of Fe
is replaced by Mn, the axial symmetry is broken. Such a small
non-axial symmetrical component of the efg can play the role
of a mixing field between two crossing nuclear levels, as will
be clear later on.

It is known that FeCO3 is paramagnetic at high
temperatures, but it becomes antiferromagnetic below the Néel
temperature of TN ≈ 38 K [6, 9–11], with the magnetic field
collinear with the axis of the efg. At low temperatures, spins of
the neighboring Fe ions order in an antiparallel way while the
next-nearest neighbors order in a parallel way. Furthermore,
the magnetic hyperfine field displays a particular temperature
dependence. The magnetic field increases with decreasing
temperature and saturates at T ≈ 18 K to a value of B ≈
18 T [7, 9, 10]. This is explained by fluctuations between the
two low-lying electronic states, which respectively yield +B
and −B [10].

Below TN the hyperfine structure of the 57Fe nucleus in a
pure FeCO3 single crystal is fully described by a quadrupole
splitting due to the efg and a temperature-dependent Zeeman
splitting due to the magnetic field. In the case of the axial
symmetry, the resulting hyperfine levels of the Ig = 1/2
ground and Ie = 3/2 excited states are pure magnetic quantum
number states, labeled by mg = ±1/2 and m ′

e = ±1/2, ±3/2,
respectively, see figure 1.

It is seen that, at the temperature of T ≈ 31 K, the
|me = 1/2〉 and |m ′

e = −3/2〉 levels accidentally cross. These
crossing levels are very sensitive to the presence of a non-axial
component of the efg, which could be induced by impurities.
It has already been argued before [3] that a non-axial efg
component perturbs the crossing �m = |me − m ′

e| = 2
levels in first order. Hence, this small perturbation can act as a

Figure 1. The hyperfine level structure of the Ig = 1/2 ground and
Ie = 3/2 excited state of the 57Fe nucleus in FeCO3 as a function of
temperature. The rectangle shows the |me = −3/2〉–|me = 1/2〉
level crossing at T = 31 K. The six allowed transitions are grouped
into three doublets, see the text.

mixing interaction and can yield observable effects at the level
crossing, without disturbing the other hyperfine levels.

2.2. Mössbauer experiment

Mössbauer spectroscopy is a very successful technique applied
by a worldwide and interdisciplinary group of researchers who
are interested in harvesting environmental information at the
nuclear level. At the heart of the technique lies the so-called
Mössbauer effect, named after its discoverer Mössbauer [15].
The Mössbauer effect is an elastic process of (gamma) photon
emission and absorption without observable recoil of the
nucleus/nuclei involved. The probability for a recoil-free
emission and absorption is given by the Debye–Waller [16] or
Lamb–Mössbauer factor [17] f .

There has been some controversy in deducing the Lamb–
Mössbauer factor in FeCO3. Goldanskii et al [18] first reported
a highly anisotropic f , which was explained as the Goldanskii–
Karyagin effect. This was later refuted by the work of
Housley et al [8, 19], which correctly included the polarization
dependence of the absorption lines. The most recent values of
the Lamb–Mössbauer factor in FeCO3 are fk‖c = 0.72(2) and
fk⊥c = 0.75(2) (at 300 K) [11], which confirm the lack of
spatial anisotropy.

The conventional Mössbauer set-up includes a radioactive
source (here 57Co in a Rh matrix) that is mounted on a velocity
transducer, which was in the constant acceleration mode, with
velocities in the range [−7 mm s−1, 7 mm s−1]. The Doppler
shift of the energy of the emitted gamma radiation in this range
allows for a resonant scan of the hyperfine energy structure of
the sample under investigation.

The sample is mounted on top of the cold finger, which
is temperature-controlled by a helium flow cryostat. The
temperature was stabilized to 0.1 K and calibrated at the
boiling point of liquid nitrogen. In principle, the cold finger
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allows operating temperatures down to 4.2 K. Finally, a Kr gas
proportional counter detects the transmitted radiation.

The signal processing set-up also has a standard
configuration. The linewidth of the source was close to the
minimum linewidth, and the linewidth (HWHM) of the two
inner lines of the calibration spectrum, with a thin non-enriched
iron foil as absorber, was 0.125(1) mm s−1.

As we are dealing with a single crystal with a preferential
direction (crystal or c axis), we can define the direction of
the incident source radiation k with respect to this axis. The
angle (θ ) between the incident radiation and the c axis can
be varied by a rotation around the cold finger axis. Two
geometries are studied, i.e. the ‘parallel geometry’ (θ = 0) and
the ‘perpendicular geometry’ (θ = π/2). Note that because the
angle (β) of the c axis to the crystal surface (cleavage plane) is
≈45◦, the effective thickness of the crystal is the same in both
geometries.

The FeCO3 crystal has a physical thickness of d =
168 μm. A dimensionless effective optical thickness can be
defined as

Te = σ0 f χρ
d

sin (β + θ)
, (1)

with σ0 the maximal resonant absorption cross section, f
the recoil-free fraction, χ the isotopic enrichment or natural
isotopic abundance of 57Fe and ρ the concentration of Fe in the
crystal. Because the radiation is incident at an angle π−(β+θ)

with respect to the crystal surface, the distance traveled through
the crystal is larger than for normal incidence. According to
its definition, Te can be interpreted as the number of resonant
scattering events that take place during the propagation of
the gamma radiation through the crystal. The value of Te

for the d = 168 μm FeCO3 crystal, taking into account the
geometry of the set-up, the measured impurity percentages and
the general parameters of 57Fe, is calculated as Te = 7.9 ≈ 8.

2.3. First analysis

The presentation of the measured Mössbauer spectra in the next
section already includes a first crude Lorentzian analysis. This
analysis still assumes a perfect axially symmetrical crystal,
i.e. without mixing interaction.

The data are fitted with the Recoil program [20], using
the ‘Lorentzian absorption profile’ procedure. This fitting
procedure simply tries to find a best fit f (v) by fitting each
absorption line i with a Lorentzian profile Li (v):

f (v) = BG −
∑

i

Li(v) (2)

with

Li(v) = Ai

π


i

(v − vi )2 + 
2
i

(3)

where BG is the spectral background, Ai is the area, vi the
resonance velocity and 
i the half-width of the absorption line.

The number of free parameters can be considerably
reduced by taking into account two physics ‘rules’. First,
according to parity invariance, the (me, mg) and (−me,−mg)

transitions are equal in all of their properties. Here, this means
that they have the same A and 
. Second, as is well known,

the positions of the absorption lines vi are related through the
underlying hyperfine interaction physics, i.e. the quadrupole
and Zeeman splitting.

Since the electromagnetic interaction of the 57Fe nucleus
with gamma radiation has mainly a magnetic dipole (M1)
character, the interaction Hamiltonian Hσ , for a particular
polarization σ , can be written as [21]

Hσ
M1 =

1∑

�m=−1

D1
�m,σ (−φ,−θ, 0)H(�m), (4)

where H(�m) designates the electromagnetic interaction that
induces a �m transition. In this expression (0, θ, φ) are
the Euler angles that describe the orientation of the incident
radiation (k) in the crystal axis system (e.g. the principal
axis system of the efg). The D1

�m,σ (−φ,−θ, 0) coefficients
describe the Wigner matrix elements. Explicit expressions for
interaction with σ = ±1 polarized radiation are given by

H+
M1 = cos2 θ

2
eiφH+(�m = +1) + 1√

2
sin θH+(�m = 0)

+ sin2 θ

2
e−iφH+(�m = −1) (5)

H−
M1 = sin2 θ

2
eiφH−(�m = +1) − 1√

2
sin θH−(�m = 0)

+ cos2 θ

2
e−iφH−(�m = −1). (6)

This means that in the parallel geometry (θ = 0) each circular
polarization can induce only one transition according to �m =
σ , whereas if θ 	= 0 each polarization induces three �m
transitions. So, in general, there are six possible gamma
transitions (me, mg) between the Ie = 3/2− and Ig = 1/2−
states. According to the parity invariance, these six lines can
be grouped in three doublets. These doublets, their splittings
�vi and center shifts CSi are identified as (see also figure 1)

doublet 1: (3/2, 1/2) − (−3/2,−1/2)

with �v1 = 3βe + βg, CS1 = IS + �/2

doublet 2: (1/2, 1/2) − (−1/2,−1/2)

with �v2 = βe + βg, CS2 = IS − �/2

doublet 3: (1/2,−1/2) − (−1/2, 1/2)

with �v3 = βg − βe, CS3 = IS − �/2

where we have defined IS as the isomer shift1

βg = c

Eγ

h̄ωL ,g, (7)

βe = − c

Eγ

h̄ωL,e, (8)

and
� = c

Eγ

6h̄ωQ, (9)

with ωL,g/e the Larmor frequency of the ground/excited state,
ωQ the quadrupole frequency, c the velocity of light in vacuum

1 The isomer shift is the nuclear analogue of the chemical shift. It essentially
measures the difference in the electrostatic interaction between a source and
absorber nucleus with their respective environment [22].
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Figure 2. Mössbauer spectra at RT and for both perpendicular and
parallel geometries. The solid line gives the best Lorentzian fit.

Figure 3. Mössbauer spectra at T = 34 K for both the perpendicular
and parallel geometries. The solid line gives the best Lorentzian fit.

and Eγ = 14.413 keV the energy of the gamma radiation.
Because βe and βg are related to each other, all �vi ’s are fixed
as soon as one doublet is fitted.

In summary, taking into account the above arguments,
the fitting function f (v) is now the sum of three Lorentzian
doublets:

f (v) = BG −
3∑

i=1

Ai

2π

(

i

(v − (CSi − �vi ))2 + 
2
i

+ 
i

(v − (CSi + �vi))2 + 
2
i

)
. (10)

The application of ‘basic’ physics knowledge has reduced the
number of fitting parameters2 from 19 to 10: the background
BG, the area Ai and half-width 
i of each doublet, the isomer
shift IS, the quadrupole splitting � and the magnetic hyperfine
splitting βg (or βe).

2 This is in the case of a non-parallel geometry. In the parallel geometry the
number of fitting parameters is reduced from 13 to 8.

Figure 4. Mössbauer spectra at T = 31 K for both the perpendicular
and parallel geometries. The solid line gives the best Lorentzian fit.

Figure 5. Mössbauer spectra at T = 18 K for both the perpendicular
and parallel geometries. The solid line gives the best Lorentzian fit.

2.4. Spectra

Although we have recorded Mössbauer spectra for many
temperatures, we only highlight the spectra at room
temperature (RT), see figure 2, and for three temperatures
below TN, i.e. for T = 34, 31 and 18 K in figures 3, 4 and 5,
respectively.

At RT, the quadrupole splitting of the excited state, as
shown in figure 1, is observable as a doublet in the absorption
spectrum. The areas of the absorption lines are thickness-
and polarization-dependent and therefore differ for the two
geometries. This effect is well described in [19].

We are particularly interested in the spectra recorded
for temperatures around the level crossing temperature. For
T < TN, the values of the parameters deduced from the
fits are graphically presented in figure 6. This includes the
fitting values from spectra at different temperatures that are not
shown explicitly. The center shifts are not displayed because
they were held fixed for all spectra at CS1 = 2.34 mm s−1

and CS2 = CS3 = 0.31 mm s−1. In the perpendicular
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Figure 6. Graphical presentation of the fitting results of the Mössbauer spectra of FeCO3, below TN. The top left figure shows the temperature
dependence of the Zeeman splitting of the two reference doublets. The top right figure gives the values of the reduced χ2 of each fit. The
deduced linewidths and areas of the Lorentzian doublets for both geometries are displayed in the bottom figures.

geometry, we first fit the splitting of the doublet 2 because
its absorption lines are best resolved. Due to the absence of
the second doublet in the parallel geometry, the splitting of
the first doublet is taken as a reference. From the values for
�v1 and �v3 a value for βe for both geometries is calculated
according to equation (8). They are shown in the upper
left part of figure 6. In the same figure, the reduced χ2

of each spectrum is given as a measure of the goodness-of-
fit.

Clearly, for T = 29/31 K the discrepancy between
experiment and the model is the largest. At the level crossing
(v ≈ −0.16 mm s−1) the difference between the predicted
Lorentzian fit and the experimental data amounts to 25% of
the absorption line. There is less absorption observed than
predicted by the fit. Therefore, we can say that the absorption
line has become (partially) transparent.

A few other interesting remarks can be deduced from the
spectra and their first analysis. First, in figure 6 the temperature
dependence of βe, which is proportional to the magnetic
hyperfine field through ωL,e, displays a similar behavior for
both geometries. This is in agreement with the temperature
dependence reported in [10]. For decreasing temperatures, the
magnetic hyperfine field reaches a saturation value. At 18 K,
we deduce that B⊥

18 K = 17.98(2) T and B‖
18 K = 17.96(2) T,

which fall within a 2σ interval of the B≈18 K = 18.3(3) T value
reported in [10].

Secondly, in figure 6 the widths of the three doublets vary
widely, although they involve transitions to the same nuclear
excited state, embedded in a particular chemical environment.
In the parallel case, it is seen that the temperature behavior
of the doublets is also quite different. An explanation of
this phenomenon is given in terms of fluctuating hyperfine
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fields [23, 24]. As the Larmor frequency of the doublets differs,
they respond in a different way to a fluctuating magnetic field.
Doublet 1 has the highest Larmor frequency and hence is
most strongly influenced by a change in the magnetic field. It
‘feels’ a more blurred magnetic field, which causes a larger
linewidth than for the other doublets. This corresponds to an
additional relaxation rate, which is most pronounced in the
case of the |me = ±3/2〉 levels. If this interpretation is
correct, then the linewidths should decrease with decreasing
temperature, which is clearly seen in figure 6. Extrapolation
shows that the linewidth (HWHM) of doublet 1 at 10 K
is about 0.17 mm s−1 which, when taking into account the
experimental line broadening, is consistent with the calculated
width corresponding to a thickness characterized by Te ≈ 9.

Thirdly, the areas of the doublets remain more or less
constant in this low-temperature interval. Because the area of
a Mössbauer absorption line depends on the effective thickness
Te, the angle of incidence θ and the magnetic quantum numbers
of the levels involved (see, e.g., [8]), it is expected that this
value is indeed temperature-independent.

Before embarking on our in-depth study of the reduction
of absorption at the level crossing, it is necessary to refute the
hypothesis of saturation as a sufficient explanation. We must,
however, make a distinction between the two geometries. In the
perpendicular geometry, each polarization state of the incident
radiation can induce all three �m transitions. Hence, at the
level crossing, the interaction strength of each polarization
state has doubled with respect to a non-crossing situation. This
can be seen as radiative interaction with an absorber that has
doubled its thickness. However, due to saturation, a doubling
of the thickness does not automatically yield a doubling of
the absorption. There is always less absorption, but how
much less depends on the initial thickness of the absorber.
It can be shown that for Te = 8 the effect of saturation is
already important. Moreover, the reduced absorption in the
perpendicular geometry can even be quantitatively explained
in a model that includes thickness effects.

Things are quite different in the parallel geometry. Now
gamma radiation with a polarization state that can induce one
of the transitions involved in the level crossing cannot induce
the other one, even if the levels cross. It is clear that in this case
no doubling of the interaction strength occurs. Therefore, the
hypothesis of saturation as solely responsible for the reduced
absorption is not tenable.

In order to fully understand these experimental results
we develop a model for nuclear resonant scattering that
incorporates not only the necessary thickness and polarization
dependence, but also takes into account an interaction that
mixes the crossing levels. Furthermore, we show that the
difference observed in the relaxation rates also plays a crucial
role in obtaining a consistent picture.

3. Maxwell–Schrödinger approach

This approach first implies the calculation of the macroscopic
polarization P(z, t), which is the (nuclear) medium’s reaction
to the electromagnetic field. The density matrix formalism
is used to facilitate the statistical summations involved in

Figure 7. Schematic representation of the three-level system under
consideration. The two excited states |2〉 and |3〉 are mixed by an
interaction � and couple to the ground state through V+ and V−,
respectively.

obtaining P(z, t) from the microscopic dipole moments. The
polarization is then used to solve the (simplified) Maxwell
equations in order to find the intensity of the transmitted
radiation.

3.1. Three-level system in the parallel geometry

We start from the Liouville equation of motion for the density
matrix operator ρ̂ of the nuclear system:

˙̂ρ = − i

h̄
[H, ρ̂] − 
̂ρ̂, (11)

with H the (Hermitian) Hamiltonian and 
̂ a linear operator
expressing all possible relaxations. We now apply this density
matrix equations to the three levels involved in the level
crossing/level mixing transition, i.e. the |mg = −1/2〉 ≡ |1〉
ground state and the |me = 1/2〉 ≡ |2〉 and |me = −3/2〉 ≡
|3〉 excited states. According to the selection rules for the
parallel geometry, σ+ polarized radiation (V+) can induce a
(2, 1) transition, whereas σ− polarized radiation (V−) induces
a (3, 1) transition. We also include a mixing interaction (�)
that allows for a (2, 3) transition. As argued before, this mixing
interaction can have its origin in a non-axial component of
the efg. The basic ingredients of this three-level system are
summarized in figure 7.

In [25] the same three-level system is analyzed in a slightly
different way. To allow an easy comparison, we follow the
same line of reasoning and notation of that paper, wherever
possible.

The Hamiltonian H of this system consists of an
unperturbed part H0 (which gives rise to the nuclear m states)
and an interaction term:

H1 = h̄V+|2〉〈1| + h̄V−|3〉〈1| + h̄�|2〉〈3| + h.c. (12)

The 14.4 keV gamma transition in 57Fe is essentially an M1
magnetic dipole transition. Hence, the first two terms describe
the interaction of the radiation with the nucleus in the magnetic
dipole approximation, with V+ = 〈2|H+|1〉E+(z, t)/2 ≡
μcμ21E+(z, t)/2 and V− = 〈3|H−|1〉E−(z, t)/2 ≡
μcμ31E−(z, t)/2, with μc a proportionality constant. Explicit

6
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expressions for the μi j matrix elements can be found in [26].
They are basically proportional to the product of a Wigner
rotation matrix element and a Clebsch–Gordan coefficient.
E+(z, t) (E−(z, t)) is the space- and time-dependent part of the
σ+ (σ−) polarized (electro)magnetic field.

The third term is a formal expression for the mixing
interaction between the crossing levels, where the mixing
frequency � is a measure of the strength of the mixing.

Applying equation (11) to this three-level system, the
following set of density matrix equations is obtained:

ρ̇11 = γρ22 +γρ33 − iV+ (ρ21 − ρ12)− iV− (ρ31 − ρ13) (13)

ρ̇22 = −γρ22 − iV+ (ρ12 − ρ21) − i� (ρ32 − ρ23) (14)

ρ̇33 = −γρ33 − iV− (ρ13 − ρ31) − i� (ρ23 − ρ32) (15)

ρ̇21 =
(
−iω0 − γ2

2

)
ρ21 + iV+ (ρ22 − ρ11) − i�ρ31 + iV−ρ23

(16)

ρ̇31 =
(
−iω0 − γ3

2

)
ρ31 + iV− (ρ33 − ρ11) − i�ρ21 + iV+ρ32

(17)

ρ̇23 = −γ2 + γ3

2
ρ23−iV+ρ13+iV−ρ21+i� (ρ33 − ρ22) (18)

with ω0 = ω2 − ω1 (ω2 = ω3). The decay of the populations
is related to γ , which corresponds to the natural decay rate of
the nuclear excited state. The coherences, however, can have
different decay rates due to other relaxation phenomena such
as phase relaxation by the presence of a fluctuating magnetic
hyperfine field [10, 26]. These decay rates are therefore given
a different symbol, i.e. γ2 and γ3 (such that γ2, γ3 � γ ).

We are interested in the solution of the ρ21 and ρ31

coherences since the polarizations of the medium are given by
P+(z, t) = μcμ12ρ21 and P−(z, t) = μcμ13ρ31 [27]. The
equations can be solved analytically in the linear response
approximation. This means we consider the response of the
medium only to first order in V±. This is a good approximation
since the interaction of the gamma radiation with the nuclei is
small. In practice, it implies that we neglect the change of the
populations ρmm . Instead, they are replaced with their initial
values3ρ0

11 = 1 and ρ0
22 = ρ0

33 = 0. Also, since ρ23 ∝ V± the
iV−ρ23 term in the equation for ρ21 and the iV+ρ32 term in the
equation for ρ31 are discarded.

The above set of equations is reduced to two coupled
differential equations:

ρ̇21 =
(
−iω0 − γ

2

)
ρ21 − iV+ − i�ρ31 (19)

ρ̇31 =
(
−iω0 − γ

2

)
ρ31 − iV− − i�ρ21 (20)

where we have, for now, assumed that γ2 = γ3 = γ , which
corresponds to the case when the normal lifetime decay is the
only mechanism of relaxation. These differential equations
can be simplified to algebraic equations by applying a Fourier
transformation according to the recipe

F(ω) =
∫ ∞

−∞
dt f (t)eiωt , (21)

3 Actually, only half of the total initial population is in |1〉 since the other half
occupies the |mg = 1/2〉 state. As the three-level system is a closed system,
we can renormalize the total initial population to the population in |1〉.

f (t) = 1

2π

∫ ∞

−∞
dω F(ω)e−iωt . (22)

The solution for the coherences in frequency domain is now
given by

ρ21(ω) = L+(ω)

2
V+(ω) + L−(ω)

2
V−(ω), (23)

ρ31(ω) = L−(ω)

2
V+(ω) + L+(ω)

2
V−(ω) (24)

with

L± = 1

ω − ω0 − � + iγ /2
± 1

ω − ω0 + � + iγ /2
. (25)

The scattering amplitudes consist of a sum (or difference)
of two Lorentzian lineshapes, which are centered around the
frequencies of the mixed levels and are in anti-phase in the
case of the polarization changing amplitudes.

The appropriate wave equations for an electromagnetic
field in a reactive medium are given by the Maxwell equations,
see, e.g., [28]. In most applications, however, a simplified
version is used by assuming that the field functions slowly vary
on the scale of the carrier wavelength λc. This is certainly a
valid approximation in the case of gamma radiation. In the case
of radiation propagating along the z axis (and thus neglecting
variations of the field intensity in the transverse directions), the
wave equations are reduced to [29]

(
∂

∂z
+ nh

c

∂

∂ t

)
E±(z, t) = 2πωcρr

nhc
iP±(z, t), (26)

with nh the index of refraction of the host material, ωc = c/λc

the carrier frequency of the field and ρr the concentration
of resonant nuclei. After Fourier-transforming these wave
equations to frequency domain and substituting equations (23)
and (24), we find
(

∂

∂z
− inhkω

)( E+(z, ω)

E−(z, ω)

)
= i

2πkρr

nh

μ2
c

4

×
( |μ21|2L+(ω) μ21μ13L−(ω)

μ31μ12L−(ω) |μ31|2L+(ω)

) ( E+(z, ω)

E−(z, ω)

)
. (27)

The solution for the electromagnetic field amplitudes is
formally given by

( E+(ω, z)
E−(ω, z)

)
= eikz S̃(ω, z)

( E+(ω, 0)

E−(ω, 0)

)
(28)

with E±(ω, 0) the field amplitudes of the incident radiation.
The scattering matrix S̃(ω, z) is calculated as

S̃(ω, z) = e(a+d)/2

D

×
(

D cosh
( D

2

) + (a − d) sinh
( D

2

)
2b sinh

( D
2

)

2c sinh
( D

2

)
D cosh

( D
2

) + (d − a) sinh
( D

2

)
)

(29)

with

a = i
2π

k
ρrz f ++(ω), b = i

2π

k
ρrz f +−(ω),

c = i
2π

k
ρrz f −+(ω), d = i

2π

k
ρrz f −−(ω),

(30)

7
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D = √
(a − d)2 + 4bc and the forward scattering amplitudes

f σ ′σ :

f ++(ω) = k2μ2
c

4nh
|μ21|2L+(ω)

f −−(ω) = k2μ2
c

4nh
|μ31|2L+(ω)

(31)

f +−(ω) = k2μ2
c

4nh
μ21μ13L−(ω)

f −+(ω) = k2μ2
c

4nh
μ31μ12 L−(ω).

(32)

Note that expression (29) exactly matches the expression for
the scattering matrix obtained in [30, 31].

There is a one-to-one correspondence with the solution
for the amplitude of the transmitted plane wave in the Blume–
Kistner model [26] if we choose nh = 1 and

μc = 1

2π

√
V kTeγ

2ρrh̄cγr
, (33)

where V is a quantization volume, γ the total decay rate and γr

the radiative decay rate. In [25] it is shown that equation (27)
can also be solved by finding two eigenmodes of E(ω, z)
which, after creation by a scattering on a first layer of resonant
nuclei, propagate independently of one another through the
medium. The results of that approach are exactly equal to those
obtained in our analysis.

3.2. Thin absorber limit

To keep things analytical, we first consider the thin absorber
limit (Te � 1). Then, only the first terms in the Taylor
expansion of the exponents in equation (29) are retained:( E+(ω, z)
E−(ω, z)

)

= eikz

[
1̃ − i

3Te

16

γ

2

( |C21|2 L+(ω) C21C13 L−(ω)

C31C12 L−(ω) |C31|2L+(ω)

)]

×
( E+(ω, 0)

E−(ω, 0)

)
, (34)

with Ci j the product of the Clebsch–Gordan and rotation
matrix coefficients of the | j〉 → |i〉 transition. The
proportionality factor is obtained from the definition of the
dipole matrix elements in [26]. We also use the definition of
the effective thickness Te (equation (1)) and the definition of
the maximal resonant cross section σ0 [22]:

σ0 = 2π

k2

2Ie + 1

2Ig + 1

γr

γ
. (35)

Let us consider the case when σ+ radiation is incident, C12 =
C13 = C∗

12 = C∗
13 and C = 3TeC2

12/16. For clarity, we
omit the convolution with the incoming radiation. Then, the
intensity of the transmitted radiation is given by

I (ω) = |E+(ω, z)|2 + |E−(ω, z)|2 (36)

= 1 + 2 Im
(

C
γ

2
L+(ω)

)

︸ ︷︷ ︸
I1(ω)

+C2
∣∣∣
γ

2
L+(ω)

∣∣∣
2 + C2

∣∣∣
γ

2
L−(ω)

∣∣∣
2
.

(37)

Figure 8. The transmitted radiation (up to first order in C) as a
function of dimensionless frequency, for different values of the
mixing interaction strength � (thin absorber limit Te = 0.1).

In the thin absorber limit, C � 1 and, hence, the last two terms
are negligible with respect to the first terms. The first term
is the source term, which represents the case of transmission
without scattering, while the second term represents the
interference of the non-scattered with a single scattering event.
The latter term can be rewritten as

2 Im
(

C
γ

2
L+(ω)

)
= −C

γ 2

2

(
1

(ω − ω0 − �)2 + γ 2

4

+ 1

(ω − ω0 + �)2 + γ 2

4

)
, (38)

which is a simple sum of two Lorentzian absorption lineshapes,
centered at ω0 ± �, respectively. This means that there is only
a (Stark) splitting of the levels, but no term that could describe
additional interference effects.

As shown in figure 8, the absorption peaks of the first-
order term are subtracted from the baseline (provided by
the source term) giving rise to the well-known Mössbauer
absorption spectrum. Note that this expression is equivalent
to the absorption derived in [32], but which is now ‘debunked’
as two Lorentzian absorption lines.

3.3. Unequal relaxation rates

It is also possible to assume that the coherences involving
the crossing levels have unequal relaxation rates (γ2 	= γ3).
A physical origin of such a difference may be found in the
fluctuations of the magnetic hyperfine field, as mentioned
previously. The transition with the highest Larmor frequency
shows a higher relaxation rate, hence γ < γ2 < γ3, with γ

the natural linewidth of the 14.4 keV nuclear excited state.
The experimental data in section 2.4 strongly support this
hypothesis. Figure 6 shows that γ3 ≈ 2γ2.

We can solve equations (19) and (20) in exactly the same
way as above, but now with γ2 	= γ3:

ρ21(ω) = δ3

δ+δ−
V+(ω) + �

δ+δ−
V−(ω) (39)

ρ31(ω) = �

δ+δ−
V+(ω) + δ2

δ+δ−
V−(ω), (40)

8
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Figure 9. Simulation of the transmitted radiation in the case of: (left figure) the optical EIT regime (γ3 = γ2/100) for different values of �
and (right figure) different values of γ3 with a fixed mixing strength � = γ2 (thin absorber limit Te = 0.1).

with

δ± = ω − ω0 + i
γ2 + γ3

4
∓

√

�2 −
(

γ2 − γ3

4

)2

(41)

δ2/3 = ω − ω0 + i
γ2/3

2
. (42)

Again, we limit our first analysis to the thin absorber case,
following the same approach as before. Let us first consider the
case when only σ+ is incident. Because of the square root in
the definition of δ± we should distinguish two cases. Then, to
first order in C (or Te), the intensity of the transmitted radiation
is given by

I ′(ω) = 1 + 2 Im

(
Cγ

δ3

δ+δ−

)
(43)

= 1 − Cγ

[
γ2

2

(
g′

+(ω) + g′
−(ω)

) +
(

γ3

(
�2 + γ2γ3

4

)

− γ2

(
γ 2

2

8
+ γ 2

3

8
− �2

))
g′

+(ω)g′
−(ω)

]
(44)

for � < |γ2 − γ3|/4 and

I ′′(ω) = 1 − Cγ
[γ2

2

(
g′′

+(ω) + g′′
−(ω)

)

+ (γ3 − γ2)

(
�2 + γ2γ3

4

)
g′′

+(ω)g′′
−(ω)

]
(45)

for � � |γ2 − γ3|/4, where we have introduced the notation

g′
±(ω) = 1

(ω − ω0)
2 +

(
γ2+γ3

4 ∓
√

�2 − (
γ2−γ3

4

)2
)2

, (46)

g′′
±(ω) = 1

(
ω − ω0 ∓

√
�2 − (

γ2−γ3

4

)2
)2

+ (
γ2+γ3

4

)2
. (47)

It is seen that, as well as a Lorentzian contribution, there
is the appearance of an interference term proportional to
g+(ω)g−(ω). When γ2 = γ3, the interference term vanishes
and the transmitted radiation (I ′′(ω)) reduces to the sum of
Lorentzians, as obtained previously.

When γ3 � γ2, e.g. if |3〉 is a metastable state, the
conditions for observing EIT are met4. Simulations of the
intensity of the transmitted radiation for γ3 = γ2/100 are
shown in the left part of figure 9. The effect of the interference
term is quite dramatic. A transparency window is created
where most absorption is canceled. At the center of the
absorption line I ′′(ω = ω0)−1 ∝ γ3/(�

2+γ2γ3/4), hence the
absorption is completely suppressed only if γ3 = 0. Also, in
order to have a large reduction of the absorption, the condition
that �2 � γ2γ3/4 should be fulfilled. These conclusions are in
perfect agreement with the generic results of optical EIT, see,
e.g., [33].

The importance of the value of γ3 with respect to γ2 is
reflected in the spectra in the right-hand part of figure 9. It is
clearly seen that, even in the presence of a mixing interaction
(here � = γ2), there is no reduction but an increase in
absorption at the line center if γ3 � γ2. This is also obvious
from equation (45), where the sign of the interference term is
determined by (γ3 − γ2).

Let us now add the incidence of σ− radiation. We only
consider the most recurrent case of � � |γ2 −γ3|/4. Using the
result in equation (45), the total transmitted radiation intensity
is calculated as

I ′′(ω) = 1 + 2
3Te

16
γ

[
Im

(
|C12|2 δ3

δ+δ−

)

+ Im

(
|C13|2 δ2

δ+δ−

)]

= 1 − 3Te

16
γ

[(γ2

2
|C12|2 + γ3

2
|C13|2

) (
g′′

+(ω) + g′′
−(ω)

)

+ (|C12|2 − |C13|2
)
(γ3 − γ2)

×
(
�2 + γ2γ3

4

)
g′′

+(ω)g′′
−(ω)

]
. (48)

The addition of the σ− contribution is of crucial importance
for the interference term. Now, the sign of this term, which

4 There are two other reasons why this special case corresponds to a
‘common’ optical EIT scheme. First, the restriction to the incidence of σ+
radiation is equivalent to one probe field. Second, in the thin absorber limit,
the possible transition |3〉 → |1〉, with emission of σ− radiation, which is not
present in a common EIT scheme, is neglected.

9
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defines whether there is destructive (−) or constructive (+)

interference, depends on the strength of one transition with
respect to the other. For example, if |C12|2 = |C13|2, there is
no observable interference, even if there is a mixing interaction
and γ3 � γ2. This is, of course, due to the perfect symmetry
of such a case, where the destructive and constructive terms
exactly cancel each other. In our nuclear level mixing case,
we have |C12|2 = 1/3, |C13|2 = 1 and γ3 ≈ 2γ2 ≈ 2γ ,
which yield a net destructive interference contribution. This
is a promising result with regard to the explanation of the
experimentally observed reduction of absorption.

Hence, we can conclude that a small but destructive
interference term is present in the intensity of the transmitted
gamma radiation at the level crossing. This is due to the
combination of asymmetrical transition strengths and different
relaxation rates, such that the strongest transition involves the
level with the highest relaxation rate.

It is interesting to note that the integrated absorption over
the full frequency range is independent of �. Although it
seems that there is less absorption, which is of course true
at the line center, this reduction is exactly compensated by an
increase of absorption spread over the wings of the resonance.
It would therefore be more appropriate to designate this effect
as a redistribution instead of a reduction of absorption.

3.4. Three-level system in the perpendicular geometry.

In the perpendicular geometry, we must distinguish two
different three-level systems. First, there is the �m = 0 (or
2a, see figure 1) transition from |mg = 1/2〉 to the |me = 1/2〉
component of the mixed levels. The intensity of this absorption
line is correctly described by equation (48) (or an extension of
equation (44)) with |C13|2 ≈ 0 because the |−3/2〉 → |1/2〉
is negligible with respect to the M1 transition. Then, it is
clear that, for γ3 > γ2, the interference is always constructive,
which gives rise to an enhanced absorption at the line center.
Therefore, although there is a reduction of absorption due
to splitting of the mixed levels, this reduction is partially
counteracted by the interference term. This result explains
why there is no important reduction observed at this absorption
line (with respect to its partner line), while it is present in the
parallel geometry.

The second three-level system involves the same states
as in the parallel geometry. The difference now is that
both polarization states of the incident radiation can induce
both transitions (2, 1) and (3, 1) simultaneously. Taking into
account the different relaxation rates, equations (39) and (40)
are modified as

ρ21(ω) = δ3

δ+δ−

(
V −

2 (ω) + V −
2 (ω)

)

+ �

δ+δ−

(
V +

3 (ω) + V −
3 (ω)

)
, (49)

ρ31(ω) = δ2

δ+δ−

(
V +

3 (ω) + V −
3 (ω)

)

+ �

δ+δ−

(
V +

2 (ω) + V −
2 (ω)

)
, (50)

with V ±
i (ω) = 〈i |H±|1〉E±(z, ω)/2 ≡ μcμ

±
i1E±(z, ω)/2. The

polarizations of the medium are also changed accordingly:

Table 1. Best fit values to the Maxwell–Schrödinger model of the
FeCO3 (Te = 8) Mössbauer spectra for three different temperatures.

T 34 K 31 K 18 K

θ 0 π/2 0 π/2 0 π/2


� (γ ) 0.9 0.9 0.9(1) 0.9 0.9 0.9
βe

(mm s−1)

0.88(1) 0.87(1) 1.02(2) 1.02(2) 1.21(1) 1.21(1)

Te 10(3) 9(1) 9(2) 10(3) 9(2) 9(4)
fr 0.52(2) 0.55(5) 0.52(2) 0.57(4) 0.52(2) 0.54(6)
q1 2.8(1) 3.2(1) 2.8(1) 3.0(1) 2.0(1) 1.9(2)
q2 — 2.6(1) — 2.5(1) — 2.0(2)
q3 1.6(1) 1.6(1) 1.5(1) 1.7(1) 2.0(1) 1.3(2)
χ2

r,min 2.4 6.2 4.3 4.6 2.7 1.8

χ2
r,min

(conv)
2.0 4.4 15.3 11.6 2.9 6.0

P±(z, t) = μcμ
±
12ρ21 + μcμ

±
13ρ31. These generalized

expressions for the polarizations are substituted in the Fourier
transformed propagation equation of equation (26). In the
next section we discuss these equations through numerical
simulations.

3.5. New fit

In order to fit the data in the case of a thick FeCO3 crystal,
the equations derived in the previous sections are solved
numerically in the fitting program. The mixing interaction is
taken into account in the following way. We assume that the
magnitude of the non-axial component of the efg (labeled with
�) is distributed in a Gaussian way around the mean value of
�. This should be in much closer correspondence with the
real conditions in the crystals than the assumption of a uniform
non-zero value of �. In practice, we make a convolution of the
initial spectrum I (v,�) with the Gaussian distribution G(�):

I (v,�) =
∫ ∞

−∞
d� I (v,�)G(� − �), (51)

with

G(� − �) = 1


�

√
2π

e
− 1

2

(
�−�

�

)2

(52)

and 
� the width of the distribution. In the fit, we choose
� = 0, corresponding to the most prevalent situation in our
FeCO3 crystal and vary 
�.

The fitted results of the spectra of the FeCO3 crystal
at three different temperatures below TN are summarized in
table 1 and visualized in figures 10 and 11. First, we fit the
spectrum in the parallel geometry at T = 31 K, yielding the
reasonable value of 
� = 0.9(1)γ . This value is kept fixed
during the fitting of all other spectra (no estimated error). Also,
to simplify the fitting procedure, the values of two hyperfine
parameters are fixed to their mean value in the previous fits:
IS = 1.33 m s−1 and � = 2.04 mm s−1. The three qi values
parameterize the line broadening. They are multiplied with
the linewidth γ in the denominator of the forward scattering
amplitudes f σ ′σ (ω) [34]. q1 belongs to the (3/2, 1/2) −
(−3/2,−1/2) doublet, q2 to the (1/2, 1/2) − (−1/2,−1/2)

doublet and q3 to the (1/2,−1/2) − (−1/2, 1/2) doublet.
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Figure 10. Mössbauer spectra of Te = 8 at T = 34 and 31 K, with
the solid line giving the best fit based on the Maxwell–Schrödinger
model, taking into account different relaxation rates and a
Gaussian-distributed �.

Not only do the fitted curves agree much better than
before, although still with a slight misfit, with the experimental
data, quantified in the reasonably small values of χ2

r,min, but the
derived values for the different parameters are also mutually
consistent. For a better comparison with the previous fits, the
last line in table 1 gives the previous values of χ2, χ2

r,min(conv).
The transition-dependent broadening of the absorption lines
(qi values) is also in correspondence with the broadening
deduced in the first Lorentzian analysis. Furthermore, the value
obtained for Te is close to its theoretical value of Te = 8.
The resonant fraction of the detected radiation, fr, is a fitted
parameter. It takes into account the recoilless fraction but also a
correction for the non-resonant radiation due to the background
coming from x-rays. The values obtained for fr are, therefore,
somewhat smaller than the critical value of the Mössbauer–
Lamb factor fLM ≈ 0.7.

4. Conclusions

Mössbauer experiments have been performed using a FeCO3

single crystal. A first analysis using Lorentzian absorption

Figure 11. Mössbauer spectra of Te = 8 at T = 18 K, with the solid
line giving the best fit based on the Maxwell–Schrödinger model,
taking into account different relaxation rates and a Gaussian
distributed �.

lines reveals a reduced absorption of gamma radiation at the
level crossing in the parallel geometry. In the perpendicular
geometry a similar transparency is observed. However, the 2a

transition, although it also involves the level crossing, does not
show a reduced absorption. If the transparency mechanism was
solely due to the Stark splitting of the mixed levels, as would
be the case when they have equal relaxation rates, a reduction
of absorption should be present in this 2a transition.

From the experimental results, however, we learn that the
transitions have unequal linewidths, originating from different
relaxation rates due to a fluctuating magnetic field. We
have shown that these unequal relaxation rates are crucial
not only for the appearance of the interference term, but
also for its sign. Now the difference between the three-level
system in the parallel geometry and the ‘�m = 0’ three-
level system in the perpendicular geometry is understood as a
relaxation-dependent destructive and constructive interference
term, respectively. Moreover, by implementing these new
insights into a fitting program, we have finally succeeded in
explaining the reduction of absorption in both geometries as the
combined effect of polarization, saturation and level-mixing-
induced transparency in � schemes with different relaxation
rates.
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[15] Mössbauer R 1958 Z. Phys. 151 124
[16] Waller I 1926 Ann. Physik 79 261
[17] Lamb W E 1939 Phys. Rev. 55 190
[18] Goldanskii V I, Makarov E F, Suzdalev I P and Vinogradov I A

1968 Phys. Rev. Lett. 20 137
[19] Housley R M, Grant R W and Gonser U 1969 Phys. Rev.

178 514
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